Advanced ML Pipeline Features
The Hokusai ML pipeline includes advanced features for production deployments and enterprise use cases.
Core Features
Model Registry
The pipeline integrates with MLFlow for comprehensive model management:
# Automatic model logging during pipeline execution
@step
def train_model(self):
with mlflow.start_run(run_name=f"hokusai_{self.run_id}"):
# Train model
model = train_with_contributed_data(
baseline=self.baseline_model,
new_data=self.contributed_data
)
# Log to registry
mlflow.log_model(model, "model")
mlflow.log_metrics({
"accuracy": accuracy,
"deltaone": self.deltaone_score
})
Current Capabilities:
- Automatic model versioning
- Performance metric tracking
- Experiment comparison
- Model artifact storage
Evaluation Framework
The pipeline includes sophisticated evaluation capabilities:
# Built-in evaluation metrics
from src.pipeline.evaluation import EvaluationFramework
evaluator = EvaluationFramework()
results = evaluator.compare_models(
baseline_model=baseline,
improved_model=improved,
test_data=test_set,
metrics=["accuracy", "f1", "latency", "perplexity"]
)
# Automatic DeltaOne calculation
deltaone_score = evaluator.compute_deltaone(results)
Features:
- Multiple metric support
- Statistical significance testing
- Performance benchmarking
- Automated scoring
Data Processing Pipeline
Efficient handling of large datasets:
# Streaming data processing
from src.pipeline.data_processor import StreamingProcessor
processor = StreamingProcessor()
for batch in processor.process_large_dataset("path/to/huge_dataset.csv"):
# Process in chunks to handle any size
validated_batch = processor.validate(batch)
processed_batch = processor.transform(batch)
yield processed_batch
Optimizations:
- Streaming processing for large files
- Automatic batching
- Memory-efficient operations
- Parallel processing support
Pipeline API
Programmatic access to pipeline functionality:
# Direct pipeline invocation
from src.pipeline.hokusai_pipeline import HokusaiPipeline
pipeline = HokusaiPipeline()
result = pipeline.run(
contributed_data="path/to/data.csv",
eth_address="0x...",
model_type="gpt-3.5-turbo",
dry_run=False
)
print(f"DeltaOne Score: {result.deltaone_score}")
print(f"Attestation: {result.attestation_hash}")
Deployment Options
Cloud Deployment
The pipeline runs on Hokusai's managed infrastructure:
- Kubernetes-based orchestration
- Auto-scaling for large workloads
- Built-in monitoring and logging
- No infrastructure management required
Self-Hosted
Run the pipeline on your own infrastructure:
- Full control over data and compute
- Customizable resource allocation
- Private model training
- Enterprise support available
Hybrid Mode
Combine cloud and on-premise:
- Sensitive data stays local
- Leverage Hokusai's evaluation network
- Attestation verification on-chain
Integration Examples
REST API Integration
# Submit data for evaluation via API
import requests
response = requests.post(
"https://api.hokusai.io/evaluate",
json={
"model_type": "gpt-3.5-turbo",
"data_url": "s3://bucket/data.csv",
"eth_address": "0x..."
},
headers={"Authorization": "Bearer YOUR_API_KEY"}
)
result = response.json()
print(f"Job ID: {result['job_id']}")
print(f"Status: {result['status']}")
Python SDK Usage
# Direct pipeline integration
from src.pipeline import utils
# Validate data before submission
validation_result = utils.validate_dataset("data.csv")
if validation_result.is_valid:
# Submit to pipeline
job = submit_to_pipeline(validation_result.cleaned_data)
attestation = wait_for_completion(job.id)
Performance & Scalability
Benchmarks
- Throughput: Process 1M+ records/hour
- Latency: < 5 minutes for typical evaluation
- Scalability: Horizontal scaling via Kubernetes
- Reliability: 99.9% uptime SLA
Resource Requirements
# Minimum requirements
resources:
cpu: 4 cores
memory: 16GB
storage: 100GB
# Recommended for production
resources:
cpu: 16 cores
memory: 64GB
storage: 1TB
gpu: Optional (speeds up training)
Security & Privacy
Data Protection
- PII Detection: Automatic scanning and removal
- Encryption: Data encrypted at rest and in transit
- Access Control: Role-based permissions
- Audit Logging: Complete activity tracking
Compliance
- GDPR compliant data handling
- SOC 2 Type II certification (in progress)
- Regular security audits
- Data retention policies
Support & Resources
- Documentation: docs.hokus.ai
- GitHub: hokusai-data-pipeline
- Discord: Join our community
- Support: support@hokusai.io