Skip to main content

Advanced ML Pipeline Features

The Hokusai ML pipeline includes advanced features for production deployments and enterprise use cases.

Core Features

Model Registry

The pipeline integrates with MLFlow for comprehensive model management:

# Automatic model logging during pipeline execution
@step
def train_model(self):
with mlflow.start_run(run_name=f"hokusai_{self.run_id}"):
# Train model
model = train_with_contributed_data(
baseline=self.baseline_model,
new_data=self.contributed_data
)

# Log to registry
mlflow.log_model(model, "model")
mlflow.log_metrics({
"accuracy": accuracy,
"deltaone": self.deltaone_score
})

Current Capabilities:

  • Automatic model versioning
  • Performance metric tracking
  • Experiment comparison
  • Model artifact storage

Evaluation Framework

The pipeline includes sophisticated evaluation capabilities:

# Built-in evaluation metrics
from src.pipeline.evaluation import EvaluationFramework

evaluator = EvaluationFramework()
results = evaluator.compare_models(
baseline_model=baseline,
improved_model=improved,
test_data=test_set,
metrics=["accuracy", "f1", "latency", "perplexity"]
)

# Automatic DeltaOne calculation
deltaone_score = evaluator.compute_deltaone(results)

Features:

  • Multiple metric support
  • Statistical significance testing
  • Performance benchmarking
  • Automated scoring

Data Processing Pipeline

Efficient handling of large datasets:

# Streaming data processing
from src.pipeline.data_processor import StreamingProcessor

processor = StreamingProcessor()
for batch in processor.process_large_dataset("path/to/huge_dataset.csv"):
# Process in chunks to handle any size
validated_batch = processor.validate(batch)
processed_batch = processor.transform(batch)
yield processed_batch

Optimizations:

  • Streaming processing for large files
  • Automatic batching
  • Memory-efficient operations
  • Parallel processing support

Pipeline API

Programmatic access to pipeline functionality:

# Direct pipeline invocation
from src.pipeline.hokusai_pipeline import HokusaiPipeline

pipeline = HokusaiPipeline()
result = pipeline.run(
contributed_data="path/to/data.csv",
eth_address="0x...",
model_type="gpt-3.5-turbo",
dry_run=False
)

print(f"DeltaOne Score: {result.deltaone_score}")
print(f"Attestation: {result.attestation_hash}")

Deployment Options

Cloud Deployment

The pipeline runs on Hokusai's managed infrastructure:

  • Kubernetes-based orchestration
  • Auto-scaling for large workloads
  • Built-in monitoring and logging
  • No infrastructure management required

Self-Hosted

Run the pipeline on your own infrastructure:

  • Full control over data and compute
  • Customizable resource allocation
  • Private model training
  • Enterprise support available

Hybrid Mode

Combine cloud and on-premise:

  • Sensitive data stays local
  • Leverage Hokusai's evaluation network
  • Attestation verification on-chain

Integration Examples

REST API Integration

# Submit data for evaluation via API
import requests

response = requests.post(
"https://api.hokusai.io/evaluate",
json={
"model_type": "gpt-3.5-turbo",
"data_url": "s3://bucket/data.csv",
"eth_address": "0x..."
},
headers={"Authorization": "Bearer YOUR_API_KEY"}
)

result = response.json()
print(f"Job ID: {result['job_id']}")
print(f"Status: {result['status']}")

Python SDK Usage

# Direct pipeline integration
from src.pipeline import utils

# Validate data before submission
validation_result = utils.validate_dataset("data.csv")
if validation_result.is_valid:
# Submit to pipeline
job = submit_to_pipeline(validation_result.cleaned_data)
attestation = wait_for_completion(job.id)

Performance & Scalability

Benchmarks

  • Throughput: Process 1M+ records/hour
  • Latency: < 5 minutes for typical evaluation
  • Scalability: Horizontal scaling via Kubernetes
  • Reliability: 99.9% uptime SLA

Resource Requirements

# Minimum requirements
resources:
cpu: 4 cores
memory: 16GB
storage: 100GB

# Recommended for production
resources:
cpu: 16 cores
memory: 64GB
storage: 1TB
gpu: Optional (speeds up training)

Security & Privacy

Data Protection

  • PII Detection: Automatic scanning and removal
  • Encryption: Data encrypted at rest and in transit
  • Access Control: Role-based permissions
  • Audit Logging: Complete activity tracking

Compliance

  • GDPR compliant data handling
  • SOC 2 Type II certification (in progress)
  • Regular security audits
  • Data retention policies

Support & Resources